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Abstract

This paper presents a generalized Bezout theorem which can be used to determine a

tighter lower bound of the number of distinct points of intersection of two or more curves

for a large class of plane curves. A new approach to determine a lower bound on the

minimum distance (and also the generalized Hamming weights) for algebraic-geometric

codes defined from a class of plane curves is introduced, based on the generalized Bezout

theorem. Examples of more efficient linear codes are constructed using the generalized

Bezout theorem and the new approach. For d = 4, the linear codes constructed by the

new construction are better than or equal to the known linear codes. For d > 5, these

new codes are better than the known codes. The Klein code [22, 16, 6] over GF(23) is

also constructed.

Index Terms: algebraic-geometric codes, linear codes, minimum distance, generalized

Hamming weights, Bezout's theorem.

1 Introduction

The minimum distance is one of most important parameters in error-correcting codes. It is

a measure of the code's capacity to correct errors or detect errors or both [1]. The minimum

distance d of a linear code C is defined by

d = min {d(u,v)},
u,vEC

u¢v

where d(u, v) expresses the Hamming distance between u and v.

From this definition, we have the following lemma.

"Gui-Liang Feng, T. R. N. Rao are with the Center for Advanced Computer Studies, University of South-

western Louisiana, Lafayette, LA. 70504, USA. email: glf@swamp.cacs.usl.edu and rao@swamp.cacs.usl.edu.

This work was supported in part by the National Science Foundation under Grant NCR-9505619, Louisiana

Education Quality Support Fund under Grant LEQSF-(1994-96)-RD-A-36, and NASA project under Grant
NAG-W-4013.

tGene A. Berg is with the National Security Agency, Fort George G. Meade, MD 20755-6000, email:

geneberg@romulus.ncsc, mil.



Lemma 1.1 Let C be an (n, k) linear code and H be a parity check matrix. If any (d" - 1)

columns of H have rank (d* - 1), then the minimum distance d is at least d', i. e. d > d*.

Recently, another important sequence of parameters called the generalized Hamming

weight hierarchy of linear codes was introduced by V. K. Wei [2]. Currently, at least four

practical motivations for studying the weight hierarchies are known. The generalized Ham-

ming weights are useful in two cryptographical applications (wire-tap channel and t-resilient

function [2]), in trellis coding (lower bounding the number of trellis states [3-4]), and in trun-

cating a linear block code [5]. Recently, G. D. Forney has shown that the dimension/length

profile (DLP) of a linear code is equivalent to its generalized Hamming weight hierarchy

[33]. Forney pointed out that these two concepts should be regarded as parts of the same

subject and that these concepts can be used to easily prove some known results and further

derive new results. Many interesting questions arise on weight hierarchies of linear codes.

Hence, research on this topic is very active. Here we review some basic definitions. Let C

be an (n, k) linear code and D be a subcode. The support of D, denoted k(D), is the set

of the not-always-zero bit positions of D, i.e., x(D) := {i: there is a (xl,x2,. .... x,_) E D,

# 0}.
Following this definition, an (n, k) code is a binary linear code of rank or dimension k,

and support size _< n. The h-th generalized Hamming weight of C is then defined to be

dh(C) := min{]_(D)[ : D is an h-dimensional subcode of C}. It is easy to see that all(C)

denotes the traditional minimum distance or minimum Hamming weight of the code. The

weight hierarchy of C can then be defined to be the set of integers {dh(C) : 1 < h <_ k}.

From the definition, we have the following lemma.

Lemma 1.2 ([7]): Let C be an (n, k) linear code and H be a parity check matrix. If any

(d* - l) columns of H have rank (d*-h), then the h-th generalized Hamming weight dh(C)

is at least d', i. e., dh(C) >_ d*.

When h = 1, Lemma 1.2 reduces to Lemma 1.1. It is very difficult to use Lemma 1.2

directly to determine the lower bound d*. In the following we introduce a new concept and

reduce Lemma 1.2 to another form, which allows d* to be more easily determined.

Let Vl, v2, ..., v v, and u be n-tuple vectors. If there are p coefficients ci such that

u-f- }_P= 1 civ i ---- O, where 0 is the zero vector, then we say that u is totally linearly dependent

on vectors Vl, v_, ..., v;. Sometimes, u may be linearly dependent on the vectors for only

some of the components (i.e., locations). Then u is said to be partially linearly dependent

on the vectors vi for 1 < i < p. The maximal possible number of those components (i.e.,

locations) can be used to measure the linear dependence of the vector u on the vectors vi,

for 1 < i < p. The number of components, for which u is partially linearly dependent on

the vectors, is called the dependent-degree of u on vi, for 1 < i _< p. Apparently, if the

dependent-degree is equal to n, then u is totally linearly dependent on vi for 1 < i < p.

Example 1.1 Let u = (1, 1, 1,0, O),vl = (1,0, O, 1, 1) and v2 = (0, 1, 1, 1, O) over GF(2).

Then u+v_+v2 = (0,0,0,0,1), u+vl = (0,1,1,1,1), u+v2 = (1,0,0,1,0), andu =

(1, 1, 1,0, 0). From these four vectors, we see that the vector (0, 0, 0, 0, 1) has the maximum

number of zeros (= 4). Hence, the dependent degree of u on vl and v2 is equal to 4.



Wegeneralizethis conceptto the caseof a sequenceof vectorsui. Let usconsidertwo
sequencesof vectorsui for 1 _<i _< p, and vectors vj for 1 _< j _< q. Let there be some

components, on which uu (1 _< p < p) are partially linearly dependent on vj for 1 _<j _< q

and ui for 1 < i < #. The number of such components can be used to measure the consistent

linear dependence of the vector ul, ..., Up on vectors vj for 1 <_j _<q. The maximal possible

number of such components is called the consistent dependent-degree of ul, ..., Up on the

vectors vj for 1 _<j _< q.

Example 1.2 Let u_ = (1,1,1,0,0), u2 -- (0,1,1,0,1), v_ -- (1,0,0,1,1) and v2 =

(0, 1, 1, 1,0) over GF(2). Since ul+v2 = (1,0,0, 1,0), uz+vl+v2 = (1, 0,0,0,0), they have

zeros at the second, third, and fifth components, and it can be easily checked that at most

three components have zeros simultaneously. Therefore, the consistent dependent-degree of

Ul, u2 on vl and v2 is equal to 3.

For a sequence of linearly independent vectors {Vl, v2, ..., Vr, ...}, let v7 express a linear
i-1

combination vi + _-_'_u=lc_,vu"

... v* denotes the maximal consistent dependent-degree of a set ofDefinition 1.1 D{,,:.t, , ,p}

{vil,...,vip} on their previous vectors, respectively, i.e., D{v:l ...v:v } denotes the maximal

number of components (i.e., locations), on which v_, for 1 < p < p are all zero simultane-
ously.

Definition 1.2 D(p") = max{D_v.. ,t"'"'v*,v-lil_ <"" < ip <_ r}.

Remark (1): Let C_ be an (n, n - r) linear code defined by a parity check matrix H_ =

[hi, ..., hr] T, i.e. the parity check matrix has r rows. Then D (_) = n - dp(C_), where C_

is the dual code of C_, and dv(C_) is the p-th generalized Hamming weight of C_.

Using this concept, the determination of the generalized Hamming weights reduces to

the calculation of D (r) for any given r vectors of a parity check matrix H. We have the

following theorem:

Theorem 1.1 For a linear code C_ defined by Hr, i.e., the parity check matrix has r rows,

if the consistent dependent-degree of any (r - d* + h + 1) rows of Hr is always less than

(d*- 1), i.e., r_(r) d* ,_'r-d'+h+l < -- 1 then the h-th generalized Hamming weight dh(C_) is at

least d*, i.e., dh(C_) >_ d*.

Proof: Assume that there is a submatrix consisting of (d* - 1) columns of H_ with rank

(d* - u), where u >_ h + 1. Then there are (r - d" + u) rows, which are linearly dependent

on their previous rows, i.e. the consistent dependent-degree of these (r - d" + u) rows is at

least (d" - 1). Thus, there are (r - d* + h + 1) rows, the consistent dependent-degree of

which is at least (d* - 1) i.e., r_(_) > d* - 1. This is a contradiction. Therefore, the' _'r-d*Th+l --

rank is at least (d* - h). Using Lemma 1.2, the h-th generalized Hamming weight of C_ is
at least d'. []



Corollary 1.1 Consider a linear code Cr defined by Hr, i.e., the parity check matrix has

r rows. If the consistent dependent-degree of any (r - d* + 2) rows of Hr is ahvays less than

(d* - 1), i.e. r)(_) d*, "-'r-d*+2 < - 1, then the minimum distance d of C_ is at least d', i.e.,
d>d*.

Let LS be a set of distinct points in a plane or a set of distinct roots of a plane curve

(i.e. a polynomial). Let LS = {(xl, 91), (x2, Y2),--., (x,, Yn)} and let h(x, y) be a polynomial

(or monomial), then a vector (h(Xl, Yl), h(x2, Y2), .-., h(x_, yn)) is called an evaluated vector

of polynomial h(x,y) on the set LS. Hereinafter, sometimes vi expresses an evaluated

vector and sometimes it expresses a polynomial or a curve if no confusion arises. Thus,

•.. v" denotes the number of distinct points of the intersection offrom Definition 1.1, D{,,.1, , ,p}

curves v_"1 = 0, v* = 0 for the case of LS being the set of all points in a whole plane, or"''' lp

denotes the number of distinct points of the intersection of curves v* = 0, v v = 0, and

f(x, y) = 0 for the case of LS being the set of all points on the curve f(x, y) = 0. Similarly,

D (_) for a given sequence of evaluated vectors expresses the maximal possible number of

distinct points of the intersection ofp curves among the first r curves of the given sequence

of curves. Therefore, the calculation of D (_) reduces to the calculation of the number of

distinct points of intersection of several curves. Bezout's theorem is the most well-known

theorem that can be applied to solving the problem of determining the number of points of
the intersection of two curves.

The organization of this paper is as follows. In the next section, we present a generalized

Bezout theorem, which can be used to determine an upper bound of the number of points

v* andof intersection of several plane curves. We also derive some properties of D{v2 ..... ,p)

D(p_). In Section III, we use the generalized Bezout theorem to derive a lower bound for

the generalized Hamming weights of the algebraic-geometric codes derived from a large

class of plane curves. In Section IV, we introduce a new construction, by which many more

efficient linear codes (include the algebraic-geometric codes) can be easily constructed. Some
conclusions are included in Section V.

2 Generalized Bezout Theorem

In this section, we first introduce Bezout's theorem. Then we derive a generalized Bezout

v" and D (_), which are useful for the next sections.theorem and some properties of D{v_ ..... ,p}

Theorem 2.1 (Bezout) [15] Let F(X, Y, Z) and G(X, Y, Z) be two plane curves without

common components, i.e., F and G are homogeneous forms of degree n and m, respectively,

with no common factors. Then the intersection of F(X, Y, Z) and G(X, Y, Z) has at most

mn distinct common points (X, Y, Z).

Definition 2.1 The x-resultant matrix, denoted by RM (f, g) (or RM) of two polynomials

f(x) = ao xn -t- al xn-1 -_-"'" + an

g(x) = boxm+blx m-1 + "'" + bm



is givenbythefollowing (m + n) x (m + n) matrix:

ao

bo

al ......... an

ao a 1 ......... an

ao al ......... an

bl ...... bm

bo bl ...... bm

bo bl ...... bm

and its determinant is called the x-resultant of the two polynomials and denoted by Resx(f, g)

(or R).

Theorem 2.2 f(x) and g(x) have a greatest common divisor polynomial with degree r if

and only if rank(RM(f, g)) = m + n - r.

Before giving a proof of Theorem 2.2, we introduce the following notations and lemmas.

Lemma 2.1 RMx[x _+m-l,x n+m-2, ..., x,1] T=

, , _X_X n-1 Ix_xn-1[f(x)x m-1 f(x)x m-2 ...,f(x)x,f(x),g( ) ,g( ) ,'",g(x)x,g(x)] T"

Lemma 2.2 gcd (f(x), g(x)) = I, if and only if rank(RM(f, g)) = m + n.

Proof: Since gcd(f(x),g(x)) = 1, there exist no P(x) and Q(x) with deg P(x) _< m- 1 and

deg Q(x) _< n - 1 such that f(x)P(x) + g(x)Q(x) = 0. And from Lemma 2.1, there exists

no non-zero linear combination of the rows of RM(f,g) to be zero vector. That implies

that RM(f, g) is a nonsingular matrix. []

Proof of Theorem 2.2: Assume that f(x) and g(x) have r common roots. Let h(x) - x r +

)--_f=l ci xr-i be the greatest common factor of f(x) and g(x). Let f(x) = (xr+_=i cix _-i) x

(ao xn-r + Ei.=l . n-r-i r m-rn-_ aix ) and g(x) = (x_ + Ei=l cix_-')(boxm-_ + E_=i bTxm-_-').

Let if(x) and g*(x) denote aox n-r + _in=__ a;x n-r-i and box m-r + _--_i_=-1_ b;x m-_-',

respectively. Then f*(x) and g*(x) have no common roots, i.e. gcd(f*(x),g*(x)) = 1.

Without loss of generality, let bm_ _ _- 0. Thus, RM(f,g)can be decomposed into a product

of two matrices, i.e., RM = Q × p-l, where Q is as follows:

* ... * 0 0 0 0ao a 1 an_ r

* ... a* 0 0 0ao a 1 n-r

S ... a mao a 1 n-r

bo b_ ... b___ 0 0 0 0

bo b_ ... b__ r 0 0 0

b0 b_ ... bin_ r

°.. 0

0 ... 0 '

0 ... 0

0 ... 0



and p-1 is as shown:

1 Cr Cr--1 ... C 2 C1

1 Cr Cr--1 -.- C2 C1

1 Cr Or-1 ... C2 Cl

1 C r Cr- 1 Cr- 2

1 C r Or- 1

1 cr
1

The matrix p-1 is a nonsingular matrix. The last r columns of the matrix Q are all

zero. The other n + m - r columns form a submatrix denoted by Q'. If we delete the last

r rows from Q', the upper part consists of the first m - r rows of Q_, then we obtain the

RM(f*(x),g*(x))

...............

...............

...............

following matrix:

0

0

0

0

0

byrd-- r

... 0

... 0

... 0

... O

... 0

• .. 0

... bm_r

Since gcd (f*(x),g'(x)) = 1, using Lemma 2.2, the left upper submatrix is a nonsingular

(m+n-2r) x (ra+n-2r) matrix. On the other hand, b__ r # 0. Hence the matrix Q' is a

full rank matrix. Therefore, rank(Q) = n + m - r, i.e., the rank(RM) is equal to n + rn - r.

Conversely, if rank(RM) = n + m - r, then from Lemma 2.2, f(x) and g(x) have the
_" d*_ _°-" where r* > 0. Then, using the abovegreatest common divisor h(x) = x _° + _,=1 _,- ,

proof, the rank(RM) = n+m-r'. Thus, r* = r. This completes the proof of Theorem 2.2.
[]

For convenience in the following discussion, we define

f-lo) =_ f =_ (ao, ai,...,an, O,...,O),

where on the rightmost side there are (m - 1) O's, and

f-li) = (O,...,O, ao, al,...,an, O,...,O),

where on the leftmost side there are i O's (0 _ i _< m- 1) and on the rightmost side

there are (ra - i - 1) O's. Thus, the above matrix consists of the vectors f_") and g-4a) for

O<_p<_m-l andO<_ <_n-1.

Sometimes the x-resultant is called the Sylvester resultant because it was introduced by

Sylvester [16]. In his paper, Sylvester showed that Res_:(f, g) = 0 if and only if either a0 =

b0 = 0 or if f and g have a common root.



The coefficients of f and g could be polynomials in y. We could have:

f(x,y) = ao(y)x TM + al(y)x m-1 + "" + am(y),

g(x,y) =- bo(y)x n + bl(y)x n-1 + ""-_ bn(y).

Then for R(y) = Resx(f,g) and for any value /3 of y we would have R(3) = 0 if and only

if either a0(/3) = bo(/3) = 0 or f(c_,/3) = g(a,/3) = 0 for some a. Thus, the roots of R(y)

= 0 are the projections of the points of intersection of f and g. In fact, the resultant

gives more precise information. Namely, if the order of the zero /3 of R(y) is e, i.e., if

R(y) = (y -/3)eD(y) with D(3) # 0, then counting properly, there are exactly e points of

intersection of f(x, y) and g(x, y) lying on y =/3. If it is not counted properly, there are at

most e distinct points of intersection of f(x, y) and g(x, y) lying on y = 3. Therefore, we

have the following theorem.

Theorem 2.3 The number of distinct points of intersection of two polynomials f(x, y) and

g(x, y) without common components is at most equal to the degree of their resultant R(y).

Proof: If/3 is a root of R(y) = 0 and its order is equal to r, then the x - resultant matrix

RM(3) has rank n + m- r. From Theorem 2.2, there are at most 7"distinct values (denoted

by a) of x such that (a,/3) are the points in the intersection of f(x, y) = 0 and g(x, y) = 0,

i.e., there are at most r common roots with y = /3 off(x,y) = 0 and g(x,y) = 0. Thus,

for each root/3 with an order r of R(y) = 0, there are at most r distinct points (a,/3) in

the intersection of f(x,y) = 0 and g(x,y) = 0. On the other hand, the summation of all

root orders of equation R(y) = 0 is equal to the degree of R(y). Therefore, the number of

distinct points in the intersection of f(x, y) = 0 and g(x, y) = 0 is at most the degree of

R(y). The proof of Theorem 2.3 is completed. []

From Theorem 2.3, the Bezout theorem can be derived. If f(x,y) and g(x,y) have

no common components, then their resultant R(y) is not identical with zero. Thus, deg

R(y) > -ec, we define deg 0 = -ec.

Now we will generalize Theorem 2.2. Let us consider p curves in affine plane curves

without common components, i.e., f,(x,y) = 0 for # = 1, 2, ..., p. Without loss of

generality, degxfl >_ degxf2 >_ "" >_ deg_:f v, and let deg_fl = m and degxf2 = n, where

deg_fz indicates the maximal i such that the monomial xiy j is a term in f,. We define the

x-resultant matrix of these p curves or polynomials as the following Z x (m + n) matrix,

7



P (m deg_f,) and s = degxfp:where E = _-_+,=1 + n -

a(O 1) a_ 1) a(ml) 0

0 a_1) al 1) a(m1)

0 0 0 a(1) hi(l) a(ml)

a(o+) a__) a(:)O o 0
o a(:>a?) a(:)O o

o o o a(:) al_) a_)

a_p) alp) a_P)0 0 0
o a(:) a?) .!_)0 o

0 0 0 a_p) a_p) a! p)

Let R(y) = Res_:(fl, ./'2, "", fv) be the non-zero determinant of the nonsingular submatrix

with the smallest degree of y of the x-resultant matrix. Similar to the proof of Theorem 2.3,

we have the general theorem as follows.

Theorem 2.4 The number of distinct points of the intersection of f_, (x, y) without common

components, for # = 1,2, ...,p, is at most equal to the degree of their resultant R(y), i.e.,

degR(y).

In order to get an upper bound ofdegR(y), we introduce a new concept. Among the f's

with the same degree of x, we select one. Thus, we can select f,x,, for # = 1,2, ...,q(_< p),

such that degzf;_, > degxfa,+t, { degxf,_la = 1,2,...,q} = {deg_f,l # = 1,2,...,p}, and f,\_
have no common components. We define the x-partial resultant matrix of these p curves or

polynomials as the following (m + n) x (m + n) matrix:

[f_0 ¢-"(d2-1) f-'(d2) f-'(d,-1) f-(dt+d'_-dq-1) f--(dl+d2-dq-1)]T where donamely, )' "'" J_l ' ¢x2 , "", JA2 , "", J_ , "", J_q J '

denotes deg_: f _x,.

Obviously, this matrix is an upper triangle matrix when dq = 0. The determinant of

this matrix can be easily calculated for the special case, i.e., the determinant is equal to

the product of all elements on main diagonal of this matrix. This determinant is called a

partial resultant and denoted by PR(y).

8



Corollary 2.1 The number of distinct points of the intersection of ft`(x, y), for p =

l, 2, ...,p, is at most equal to the degree of their partial resultant PR(y).

Example 2.1 Let us consider the number of common points on the following four curves

over GF(24):

xS+y4_Fy=O

x 3 + a(y)x 2 + b(g)x + c(y) = 0

xy + e(y) = 0

y2+ fy+g=O

We have the following matrix:

1 0 0 0 0 g4+y 0 0

0 1 0 0 0 0 y4+y 0

0 0 1 0 0 0 0 y4+y

0 0 0 1 a(y) b(y) c(y) 0

0 0 0 0 1 a(y) b(y) c(y)

0 0 0 0 0 y e(y) 0

0 0 0 0 0 0 y e(y)

0 0 0 0 0 0 0 y2+fy+g

Thus, PR(y) = y2(y2 + fy + g). Obviously, degPR(y) = 4. Therefore, the number of

distinct points of the intersection of the four curves is at most 4.

Remark (2): Here we regard ft`(x,y) as a polynomial of x and the coefficients are poly-

nomials in y. We also can regard ft`(x,y) as a polynomial of y and the coefficients are

polynomials in x. The number of the distinct points of intersection of f,(x, y)'s is the same.

The distinct points of intersection of ft`(x, y)'s obtained by the two approachs are also the
same.

Remark (3): It is sufficient and necessary that ft`, for p = 1,2, ...,p, have no common

components.

Definition 2.2 D{]_,i2,...Ip) denotes the number of distinct points of the intersection of

curves ft` (x, y) = O, for # = 1, 2, ..., p.

Definition 2.3 Given a sequence of polynomials {fu(x, Y)I# = 1, 2, ..., r}.

D (') = max{D{/;,,/;2,...,I;,}lA1, ..., Ap __ r},

where f_, expresses a linear combination of fi for i =1, 2, ..., At,, and the coefficient of f_,
. _A_-i

is 1, i.e., f.{, = f.\, + _i=1 cifi.

We have the following results:

Proposition 2.1 D{...,f(x,y)g(x,y),...} _< D{...,](x,y),...} + D{...,g(_,y) ...,}.

Proof: The set of all roots of f(x, y)g(x, y) = 0 is a union of the set of all roots of f(x, y) = 0

and the set of all roots of g(x, y) = 0. We have Proposition 2.1. []



Proposition 2.2 D{A...,yp} <_ min{D{y,)ltL = 1,2, ...,p}.

Proof: All the points of intersection of fg(x,y) = 0, for /t = 1,2,...,p, are the points of

fu(x, y) = 0, respectively. Therefore, we have Proposition 2.2. []

From Proposition 2.1 and Proposition 2.2, we have:

Proposition 2.3 D{gA,...,gfp } __ D{g} + D{A,...,]p}.

Proposition 2.4 D{gA, A .../p} = D{A...,]p).

Proposition 2.5 D__) > r)(_) + 1.
-- _p+l

Proof: Assume r}(') = D_. _.... r. }, where Ap+l < r. Let (x',y') not be in the
_p+ 1 t- xl 'J ;_2 ' " xp'f_p+ 1

intersection of the p+ 1 curves, i.e., fA,(xt, yr) are not all equal to zero, for p = 1,2, ...,p,

p + 1. Without loss of the generality, let f,{, (x', y,) ¢ 0. We denote J,\,t¢*¢x', y') = t,p for

# = 1,2, ..., p, p+ 1. Thus, Vl _ 0. Now we define f,_, = f,{, - v,¢.t,1y'\' ' for p = 2, 3, ..., p, p+ 1.

Thus, we have ¢' (x' ..., " x*J_,t ,Y') = 0 for p = 2,3, p, p+ 1. It is easily seen that if f,{,(,y')
t! "X* *\-- 0 for p = 1,2,3,...,p,p+1, then j_\,( ,y ) = 0 for p = 2, 3, ..., p, p + 1. Therefore,

r)(_)
Dui2,-..,]ipJip+] } -> _p+lr)(_)+ 1. From the definition of D (r), we have D (r) -> _p+l + 1. The

proof is completed. []

Remark (4): Proposition 2.5 corresponds to the monotonicity of the generalized Hamming

weights (See Theorem 1 in [2]).

3 The Generalized Hamming Weights of AG Codes from a

Large Class of Plane Curves

We are now interested in the following irreducible curves [17-18]:

x _ + yb + f(x,y) = 0, (1)

where (a,b) = 1, and bi + aj < ab for any xiy j being a term in f(x,y). Miura-Kamiya

curves are special cases of (1) [19]. Since they are irreducible, any set containing one of

these polynomials has no common non-constant factor. The results of this section can be

generalized to the curves of (1), but for convenience of exposition we derive them using the

following Hermitian curve over GF(2 4) as an example:

x S + y4 + y = 0. (2)

For (2), we define the weights of monomials as follows: w(x) = 4, w(y) = 5 and w(xiy j) =

4i + 5j. We have the following sequence of monomials:

H = { 1, x, y, x 2, xy, y2, x 3, x2y, xy2, y3, x 4, x3y, x2y2, xy3, x _, xay, x3y2, x2y3, x 6,

x_y, x4y 2, ... } = { x'yJlO < i < 15,0 < j _< 3} = {h_,hg, h3,...,h_,...,h64 }.

It can be checked that the weights of monomials in H form an ascending sequence:

W = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, ..., 62, 63, 65, 66, 67, 70, 71, 75}.

10



Let L(r) be the linear space spanned by the first 1"monomials of H. Obviously hr E

L(r) - L(r - 1). If polynomials f(x,y), g(x,y) E L(r) - L(r- 1), we say f(x,y) and

g(x,y) are consistent and write f(x, y) ,._ g(x, y). In this paper, [xiy j] (or h_) denotes all

polynomials that are linear combinations of xiy 3 (or hr) and its previous monomials in which
r--1

the coefficient of xiy j (or h_) is 1, i.e., h_ - hr + _--_,=1 c.h,. Hence we have [xiy j] ,,_ xiy j

and h_ ,-_ hr. For convenience, let ho = x 5 + y4 + y. Sometimes, if no confusion arises,

D{hT, _,h_2 ...h_p } is represented as D{_1,.\2 ...Ap }. From these definitions and the results in
Section II, we have the following lemmas.

Lemma 3.1 D{[_,yj]} _< 4i + 5j.

Proof: Let h_ = xiy j and consider any linear combination of the form h: = xiy j +
r--l

_,=1 c,h,. Each monomial h,, 1 < # < r, has a y-exponent at most 3. Thus, x 5 + y4 + y

is not a factor of h:. Since x 5 + y4 + y is irreducible, h: and x 5 + y4 + y have no common

factors. So Theorem 2.3 applies.

The x - resultant R(y) of x 5 + y4 + y = 0 and xiy j -Jr-.... 0 is the determinant of the

following matrix:

1 0 0 0 0 y4+y 0 0

0 1 0 0 0 0 y4+y 0

0 0 1 0 0 0 0 y4 +y

o o o o o ... 1 o ...
yJ a(y) b(y) ... c(y) 0 0 ... 0
0 y3 a(y) b(y).., c(y) 0 ... 0

0 o 0 0 0 ... yJ a(y)

... 0

• .. 0

... 0

y4+y ,
0

0

e(y)

where deg a(y),deg b(y),...,deg e(y) are all less than 4. Thus, R(y) = (yj)5(y4 + y)i +...,

and degR(y) = 4i + 5j. The proof is completed. []

Lemma 3.2 Let gcd(h;h, ..., h,xp) = h. Then D{h_,_ .....hlp} < D{h} + D{[x,lyj_ ] .....[_,,vj,]},
where t <4,4>il >i2 >'..>it=O, and O = jl < j2 < " " < jt < 3.

Proof: Since y4 = xS+ y, and applying Proposition 2.3 and Proposition 2.4, we have
Lemma 3.2. []

Example 3.1 Let hA,, for# = 1, 2, ...,p, be x 6, x 5, xay, x4y 2, x2y 2, xy 2. Thus, gcd(x 6, x 5,

x3y, x4y2, x2y2,xy 2) = x, i.e., h = x. From Proposition 2.4, x 6, x4y _, and x2y 2 can be

deleted. Thus, from Lemma 3.2, we have

D{(_61,[_Sl,[,:3yl,[_4_2],[_2_l,[_y21}_< D{[_]} + D{l_4],[_2y],[y21}.

Therefore, t = 3, i, = 4, 2, O, and j, = 0, 1,2.

11



t--1

Theorem 3.1 D{b.,lyj1] .....[x,t_jtl} _< _u=l(it,-_,+l)(j,+l-Jl), where t <_ 4,4_> il > i2 >
• .. > it = O, and 0 = Jl < j2 < "'" < jt <_ 3.

Pro@ Since degx(xS+ y4+ y) > degx[xilyjl] > ... > degx[xityj,] and it = 0, we can

construct PR(y) and know that degPR(y) t-1 • . t-I . •= E.=0(_U --tu+l )Ju+l = _u=l (zu --/tt-F1 ) (Ju+l -
ji), where jl = 0, i0 = 5. Thus, the proof is completed. []

Example 3.2 D{[x4],[x2ul,[y2]} _< (4 - 2)(1 - 0) + (2 - 0)(2 - 0) = 6.

Lemma 3.3 IfD(p_)= D{s_,s2 .....sp} andht_ is deleted, i.e.,t\ e {1,2,...,r}-{Sl, S2,...,Sp},

then all factors of h¢_ should be deleted, i.e., it is not in the set {hs_,..., hsp} •

Proof: Suppose that

D(pr) = D{s_,s2 .....sp}.

Let {tl,t2,...,tr_v} = {1, 2, ..., r} - {sl,s2,...,Sp} • If h_, is a factor of ht_, then from

Proposition 2.4 and the definitions, we have

D(pr) = D{sl,s2 ..... sv} = D{_,,_2 ....._v,tx) < r)(_)-- _p+l"

However, from Proposition 2.5, we have D(p_) > r)(r) + 1. Thus, we have a contradiction.
-- _p+ 1

[]

Definition 3.1 ,4 set S of non-negative integer points (i, j) (i.e., i and j are non-negative

integers) is called a regular set if for (i,j) 6 S we have (i',j') C S, for all 0 <_ i' < i and

O<_j'<_j.

Using the definition, we have the following result:

Corollary 3.1 For D{k,,k2 .....kv}, if set {(i,j)[xiy j E {hi,h2,..., h_} - {hk,, hk2,...,hkp}}
is not a regular set, then there exists at least one set of {Sl,S2,...,Sp} with s v <_ kp, such

that D{_,s_ ....._p) >_ 1 + D{k_,k2 .....kp}.

Example 3.3 Let r = 14 and p = 6. The first 14 monomials are { 1, x, y, x 2, xy,

x y, xy x y, xy }. If{ ..., } ={ 2, 7, 11, z2, is,
1_ }, then {1,2,...,r}- {kl,...,kp} = {1,3,4,5,6,8,9,10}. Obseve the set {(i,j)[xiy j E

{51, 53, 54, 55, h6, as, 50,510}} = {(0, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1,2), (0, 3)} does

not form a regular set, because (2, 0) belongs to this set but (1,0) does not. If we choose

{s,,..., s6} = {7,9, 11, 12, 13, 14}, then {1, 2, ..., r} - {si, .... sp} = {1, 2, 3, 4, 5, 6,8, 10}. The

corresponding monomials are {1, x, y, x 2, xy, y2, x2y, y3} and form a regular set. Obviously,

D{7.9,11,12,13,14} >_ 1 + D{2,7,11,12,13,14 }. The corresponding monomial points are shown in
the following figures.

3

2

1

0

t

2 3 4 5 6 0 1 2 3 4 5
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Theorem 3.2 Let a set of points corresponding to kl, k2, ..., kp be obtained by deleting a

regular set, and let their greatest common divisor be 1, i. e., gcd(hkl,hk2,...,hkp) = 1.

Then

D{kl,k2 .....kp} <- kp- P.

Proof: Since gcd(hkL, hk2, .-., hkp) = 1, these monomials contain the points (0, tl), (s> t2), ...,

(s.x-1, t.\_l), (s\, 0) and their multiples, where ,k < min{5,p} and

3>_tl >t2 >'-->t.x-1 >t_=0and 0=sl < s2 <'-'<s.\-i < s\ _4.

Using Theorem 3.1 and the definition of regular set, D{kl,k2 .....kp} <- the number of points
contained in the area obtained by these points as sentinels of the regular set (see the figure

below), that is denoted by D{kL,k2 .....kp}.

This area contains at most kp - p points. This completes the proof.

The following corollary can be easily seen.

Corollary 3.2 D (r) < max{D{h,)+kp-p}, where {h_hk_,..-

and kl < k2 < "" < kp.

We show two examples to illustrate this lemma.

[3

, h,hkp} C {hi, h2,'", hr}

Example 3.4 Let us consider D{[y2],[_2y],[_yq,[_q,[_3y],[_2y2],[_yq,[_q,[_-%],[_3y2l,D2y3]},p = 11

and kp = 18. From Theorem 3.2, D{[yq,[_2yl,[_:y2],[y3],[_3yl,[_=2yq,[_yq,[_q,[_%],[_=3yq,[_2yq)_< 7 =

kp - p.
J

2

1(

(
0

#ofO is7.

D 3 3 4 X4 X3 2 X2 3 X6 _5 X4 2Example 3.5 Let us consider {[y ],[z y],[y ][ y][ _ ],[ _ ],[ ],[ y],[ y ]} where p = 9 and
: D 3 3 4 x4 _3 2 x2 3 i6 _5 _4 2 _ -kp 21. From Theorem 3.2, {[_ ],[x _],[u ],[ _],[ _ ],[ _ ],[ ],[ v],[ _ ]) < 12 = kp p.

Theorem a.a D (_) _< w(h_)- w(hp).
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Proof: Suppose D (r) = D{h;1,h; 2 ..... h;p}- Let gcd(hsl, hs 2, ..., h_v) = hq, i.e.,

{hs_, h_2,...,h_"} = hq x {hk_,hk2,..., hkp},

where

gcd(hk_, hk2, .--, hkp) = 1.

From Theorem 3.2 and Proposition 2.3, we have

D{h* l ,h;_ .....h'v} < D{h_} + D{hi_ ,h_2.....hip} <_ w(hq) + k; - p.

Since k v >_ p, we have w(hp)-p_< w(hkv)-kp. On the other hand, hkv'hq = h, v and

sp <_ r. This means w(hkp) + w(hq) < w(hr). Combining the above two equations, we have

w(hq) + kp- p < w(hq) + w(hkp) - w(hp) _< w(h_) - w(hp).

Thus, the proof is completed.

Corollary 3.3 /f h_ _-, hp • h, for some 1 < p < r, and D{h;} = w(h,), then

D(p') = w(h,).

Proof." Since h_ ,-_ h v • h,,

h, x {h,,h2,---,hp} C_{hl,...,hv,-",h_}.

[]

Thus, by Proposition 2.3. D if) > D ......... >, -- {h.ht,h_.h2, ,h,hp} -- D{h;}"

On the other hand, D{h;} = w(h,) = w(h_) - w(hp). From Theorem 3.3, D (_) <

w(h_) - w(hp) = D{h;}. Therefore, D(p_) = D{h;} = w(h,).

h v • h., and r - p >_ w(h_)}, for anyLemma 3.4 If there is no 1 < p < r such that h_

1 < v < r with that h_, ,._ h p • h, and r' < r, then

D (r) < r- p. (3)

Proof'. If D(p_) hkv) 1, then from Lemma 3.4,= D{h_q ,h_2 ..... hip} ' where gcd(hk_, hk_, ..., =

D if) _< r- p. Otherwise, gcd(hk,,hk2,...,hkp) = h,,h'_ _- hv-h,, and r' _< r. Since

r - p _> w(h,) and Theorem 3.3, O ff) _< w(h'_) - w(hp) < r - p. []

Example 3.6 For the Hermitian curve (2), let us consider D (16). Since D(h.} = w(h,),

using Theorem 3.3, it can be easily checked that D(616) _< r - p _< 10.

In the following we show how to find all generalized Hamming weights for an algebraic-

geometric code by one example.

14



Example 3.7 Consider r = 15 and p = 7, i.e. h_ = 50 = x 5 _ y4, hp = 30 = x 3. H'e

have iL = 4, because h4. hr "_ his, i.e., w(hl5) = w(h4)+ W(hT)(20 = 12+8). On the other

hand, for Hermitian curves, Dh, = w(hu). Using Corollary 3.3, we have D_ 15) = 8.

Example 3.8 Let us consider a Hermitian code C16 over GF(24), a parity check matrix of
which is:

Hi6 = [1, x, y, x 2, xy, y2, x 3, x2y, xy2, y3, x4, x3y, x2y2, xy3, x 5, x4y]T.

We have the weight sequence: W = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
and Table 1

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w(h_) 0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 21

Table 1:

With Table 1 and Theorem 3.3, we compute

D116) = w(hl6) = 21, D_16) = w(hl2) = 17, D(316)= w(hll) = 16, D (16) = w(hs) = 13,
_____ __-- : /D (16)D_16) = w(hT) = 12, D_16) = w(h5) 9, D(s16) w(h4) 8, -ll = w(h3) = 5,

D(16) /-)(16)x2 =w(h2)=4, _16 =w(hl) =0.

Now using the monotonicity proposition, i.e. Proposition 2.5, we obtain

= /-)(16) K)(16) y)(16) /-)(16)D 16) 7, _10 = 6, _13 = 3, _14 : 2, _15 = 1.

For the last remaining value, D_ 16), if using Proposition 2.5, then we have only have

10 = D_ '6)+1 5 D_ 16) < D_ 16)- 1 = 11. Using Corollary 3.2, we have D (16) = 10 (see

Example 3.6). Thus, we have the following values.

Di16) = 21, D_16) = 17, D_16) = 16, Dii6) = 13, D_16) = 12, D(16) = 10, D_ 16)= 9,

(8 (9 = F)(16) F)(16) /-)(16) F)(16) /-)(16) F)(16)D 16) = 8, D 16) 7, _10 = 6, _11 = 5, _12 -- 4, _13 = 3, _14 = 2, _15 = 1,

(16)
16 = O.

These terms appear in the rightmost column of Table 2.

This table allows us to compute the generalized Hamming weights, di(C16), as follows.

From the table, for each column h = i (i = 1, 2, 3, 4, ... ), we consider the first entry that is

greater than the entry at the same row and the last column. According to Theorem 1.1, this

entry plus 1 gives a lower bound of di(C16). In the above table, these entries are marked by

an '*'. For example, in the column for h = 1, 16(< 21), 15(< 17), 14(< 16), 13(= 13), 12(=

12), 11(> 10), 10(> 9),9(> 8), ..., 1(> 0). Therefore, 11 is the first entry that is greater than

10 (which is at the same row and in the last column). Hence, d1(C16) > 12. Similarly we

have d2(C16) > 15, d3(C16) > 16, d4(C16) > 19, d5(C16) > 20, d6(C16) > 21, d7(C16) > 23,

and dh(C16) > h + 16, for h = 8,9, 10, 11, ...,48.

For the Hermitian code, for each x, since there are exactly 4 distinct rational points

(x, y), and for each y # 0, since there are exactly 5 distinct rational points (x,y), the

generalized Hamming weight lower bounds derived by the above approach are identical to

their generalized Hamming weights.
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d- 1 = 16-p + h

p h=l h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=lO h=ll h=12 D_ _)

1 16 17 18 19 20 21 22* 23* 24* 25* 26* 27* 21

2 15 16 17 18" 19" 20* 21 22 23 24 25 26 17

3 14 15 16 17 18 19 20 21 '2'2 23 24 25 16

4 13 14" 15" 16 17 18 19 20 21 22 23 24 13

5 12 13 14 15 16 17 18 19 20 21 22 23 12

6 11" 12 13 14 15 16 17 18 19 20 21 22 10

7 10 11 12 13 14 15 16 17 18 19 20 21 9

8 9 10 11 12 13 14 15 16 17 18 19 20 8

9 8 9 10 ll 12 13 14 15 16 17 18 19 7

10 7 8 9 lO 11 12 13 14 15 16 17 18 6

11 6 7 8 9 10 11 12 13 14 15 16 17 5

12 5 6 7 8 9 10 11 12 13 14 15 16 4

13 4 5 6 7 8 9 10 11 12 13 14 15 3

14 3 4 5 6 7 8 9 10 11 12 13 14 '2

15 2 3 4 5 6 7 8 9 10 11 12 13 1

16 1 '2 3 4 5 6 7 8 9 10 11 12 0

Table 2:

4 Construction of Efficient Linear Codes with Small Mini-

mum Distance

In this section, three examples illustrate how the generalized Bezout theorem can be used

to construct more efficient linear codes including the algebraic geometric codes from plane

cu rves.

4.1 Efficient Linear Codes with Minimum Distance 4

Let us consider D_4) over GF(2m), where the first four polynomials are {1, x, y, x 2 +/3xy +

y2}, where/3 is any element with tr(/3 -1) = ____I/3-2' = 1 over GF(2m).

In the following, we will prove an important result:

Theorem 4.1 D_ 4) _< 2.

Proof'. Since the four polynomials are 1, x, y, x2-4-/3xy-4 - y2, we have the following selections:

{1, x}, {1, y}, {1, x 2 + _xy + y2}; {x, y}, {x, x 2 +/3xy + y2} , and {y, x 2 +/3xy + 9 2} .

From D{[1]} = 0 and Lemma 2.3, D{[1],[x]} = D{[1],M } = D{[1],[z_+f3xy+y2]} = 0. Also,

from Theorem 3.4, D{[x],M } = 1. Now we calculate the fifth selection, i.e. D{[z],[z2+,_zy+yN}.

For any constants b, c, d, e, we calculate the number of distinct points of intersection of the

following curves:

z+b=0,x 2 +/3xy + y2 + cy + dx + e = O.

16



Wehave
1 3y+d y2+cy+e

R(y)= 1 b 0 ,
0 1 b

i.e., R(y) = y2+cy+e+.... Thus, degR(y) = 2. From Theorem 2.3, D{[x],[_2+_+y2]} _< 2.

Now let us consider the last selection. For any constants a, b, c, d, e, we calculate the

number of distinct points of intersection of the following curves:

y+ax+b=O,x2 + /3xy + y2 + cy + dx + e = O.

We have
1 3x+c x2TdxTe

R(x) = 1 ax + b 0

0 1 ax+b

i.e., R(x) = a2x 2 + b2 + x 2 + dx + e- 3ax 2 - acx - 3bx - bc = (a 2 + 3a + 1)x 2 + (d+ 3b+

ac)x+bc+b 2. Since tr(2 -1) = 1,a2+3a+ 1 # 0 for all a 6 GF(2m). Thus, deg R(x) = 2.

Therefore, D{[yl,[_2+_y+_=]} < 2.

Combining the above results, we have D_ 4) < 2. []

Remark (5): For the maximal number of distinct points of intersection, the following

forms are equivalent:

y+ax+b=O,x 2 + 3xy + y2 + cy + dx + e = O.

and

y+ax+b=O,x _ +/3xy + y2 + dx + e = O.

Hereinafter, we use the second form for simplification.

Remark (6): Observe that D{hll .....h;,p} <--l, if and only if -oc < deg of R(x) <_ I. Further,

if the degree of R(x) is equal to -oc, i.e., R(x) is a zero, then R(x) = 0 has all x for solutions.

Theorem 4.2 Let C be a linear code with length n = 22m over GF(2m), which is defined

by a parity check matrix H - [1, x, y, x 2 + _xy + y2]T. Then the minimum distance of C is

at least 4.

Proof." From Theorem 4.1, D_ 4) = D{[yl,[_2+Z_y+y2]} _< 2 < 4- 1. From Corollary 1.1, the
minimum distance of C is at least 4. 1:3

Example 4.1 Let m = 2, and let o_ be a primitive element of GF(22), /3 = a -1. It can

be easily checked that o + (_2 = 1 # O. From Theorem 4.2, the following matrix defines a

linear code C with length 16 and minimum distance at least 4 over GF(22):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 o _ a a _2 o2 o2 o2

0 1 _ _2 0 1 a _2 0 1 o _2 0 1 a o 2

0 1 _2 _ 1 _2 a2 1 _ a s a a _ 1 o 1

17



Construction 4.1: Let n = 2 2kin, The following parity check matrix H defines a linear

code C with length n = 2 2kin and minimum distance at least 4 over GF(2m), i.e., C is a

(2 2kin, 22kin - 1 - 3k, _> 4) code:

2T
H = [1, xl,Yl,Zl 2 + _xly I + y21,'",xk,yk, X2k -_-/_xkyk -_- Yk] ,

where tr(/3 -1) = 1.

These codes are better than the Kaneda codes [21], and same as the Chen codes [21].

However, the derivations are different. The codes obtained by Construction 4.1 can be more

easily decoded than the Chen codes.

4.2 Efficient Linear Codes with Minimum Distance > 5

Let us consider D_7) over GF(2m), where the polynomials are {1, x, y, x 2,.xy, y2, X3_JcTX2yq_

/3xy2 + y3} , where 7, L_ E GF(2 m) and x3 + 7x2y + t3xy 2 + y3 is irreducible. We have the

following theorem.

Theorem 4.3 D_ 7) < 3.

Proof." Let D_ 7) = D{.\1,._2,.\3,_4}. If A1 = 1, then from Proposition 2, D{.h,A2,.x3,_4} < D{1} =

0. If £1 = 2 or 3, then it can be easily checked that D{j\l,,x2,,xa,,x4 } < 3. Now we need only

to consider the case of A1 = 4, i.e., D{[_21,[x_l,[y2l,[_3+.y_-:y+Z_2+_31}. Let us consider the

following curves:

x2+ay+bx+c= 0

where a,b,...,l are any
matrix:

1 7Y fly2 + k

0 1 -),y
0 0 1

0 0 0

0 0 0

xy + dy + ex + f = 0

y2 + gy + hx + i = O

x 3 + 7x2y +/3xy2 + y3 + jy+ kx + l = 0

constants of GF(2m). We have the following partial x-resultant

y3+jyTl 0

_y2 + k y3 + jy + l

b ay+c

y+e dy+ f

h y2 +gy+ i

PR(y) = (y + e)(y 2 + gy + i) - h(dy + f). degPR(y) = 3. Combining the above results,

the proof is completed. []

From Corollary 1.1 and Theorem 4.3, we have the following theorem.

Theorem 4.4 Let C be a linear code with length n = 22m over GF(2m), which is defined

by a parity check matrix H - [1, x, y, x 2, xy, y2 x 3 + 7x2y +/_xy2 + y3]T, where x 3 + 7x2y +

_xy2 + y3 is a irreducible polynomial over GF(2m). Then the minimum distance of C is at

least 5.
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Example 4.2 Let m = 2 and let 0/ be a primitive element of GF(22). It can checked that

x3 + 0/x2y + y3 is an irreducible polynomial. From Theorem 3.3.2, the following matrix

defines a linear code C(16, 9, _>5) over GF(22):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 a _ a _ _2 a2 a 2 a2

0 1 _ _2 0 1 a _2 0 1 a a 2 0 1 a _

0 0 0 0 1 1 1 1 a2 _2 _2 _2 _ 0/ a

0 0 0 0 0 1 a a 2 0 a _2 1 0 0/2 1

0 1 a 2 a 0 1 a 2 a 0 1 _2 a 0 1 a 2 0/

0 1 1 1 1 a a 2 1 1 1 a a _ 1 a 2 1 o,

Construction 4.2: Let n = 22kin, The following parity check matrix H defines a linear

code C with length n = 22kin and minimum distance at least 5 over GF(2m), i.e., C is a

(22kin,22kin - 1 - 6k, _> 5) code:

2 2 3 X 2H = [1,..-,xi,yi, xi,xiYi,yi,xi + 7 iYi + 3xiy_ + y_,'"]T,

where x_ + 7x_yi + 3xiy_ + y_ are irreducible over GF(2 TM) for i: 1,2, ..., k.

Remark (7): The result can be generalized to the cases of any minimum distance d >_ 6.

The code dimension can be increased by at least one, while keeping the same code length

n = 22m and the minimum distance d > 6 over GF(2 TM) [18, 22].

4.3 Improved Klein Codes

Let us consider the Klein curve over GF(23):

x3y+ y3 + x =0. (4)

There are 22 points on the curve. Let LS be the set of all points on the curve. The LS has

the following points:

x= y= x= y= x= y=

0 0;

1 0/, 0/2 0/4;

c_ 1, 0/2, 0/6; 0/2 1, 0/4, 0/5; 0/4 1,0/, 0/3;

0/3 0/2 0/3 0/5_ 0_6 0¢4 0,6 0/3; 015 0/, 0/5 0/6;

where 0/is a primitive element of GF(23).

Let us consider a linear code C defined by the parity check matrix

H -- [1, x, y, x 2, xy, x 3, y2]T.

Theorem 4.5 The minimum distance of the code C is at least 6, i.e., C is a linear code

(22, 15, > 6) over GF(23).
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Proof: From Corollary 1.1, it is sufficient to prove D(37) < 4. From the definition,

D_ 71 = max{Dlill .... }, D{M .... }, D{Iy I .... }, Dfi_2l,[_l,[u_]}, D{l_2l,[_3l,[y_l}, D{I_-'],t_ul,I_a]}, D{[_yl,[_31,[u21} }.

It is eanily seen that the first number is equal to zero, the second and third numbers are

at most 3, and the 4-th number is also at most 3. In the following we prove that the 7-th

number is at most 4. The proof of that the 5-th number and 6-th number are at most 4 is
similar to the cane of the 7-th number.

From the definition, D{[_2],[xu],[_3]} expresses the maximal number of distinct points of

the intersection of the following four curves:

{
where i,j, k, a, b,c,d, f,g, h are

the following PR(y):
1

0

0

0

0

0

It is equal to

It is equal to

x3y+ y3 + x =0

x 2 +iy+jx+k = 0

xy+ax2+by+cx+d=O '

x3 + fy+ gx + h=O

any constants

(5)

over GF(23). From these equations, we have

0 g fy+h 0 0

1 0 g fy+h 0

0 1 0 g fy+h

0 y 0 1 y3

0 0 1 j iy+k

0 0 a y+c by+d

1 0 g fy+h 0 0

0 1 0 g fy+h 0

0 0 1 0 g fy+h

OOy 0 1 y3

0 0 0 1 j iy+k

0 0 0 0 y+c t bly+d I

1 g fy+h

y 1 y3

0 y + c I bly + dt

It equal to y4 _+_.... Therefore, the degree is 4. Hence, D{[x2],[_u],[_31} _< 4. Combining

the other numbers, we have D_7) _<4. Thus, C is a (22, 15, >_6) linear code over GF(23). []

Using the result in [17,18], we can only obtain a linear code (22, 14, _> 6) over GF(23).

For the current Klein code, using the Riemann-Roch theorem, we also obtain a (22, 14, 6)

Klein code.

Let us consider the another linear code C* defined by the parity check matrix

H - [1, x, y, x 2, xy, x 3 + y2]T.

Theorem 4.6 The minimum distance of the code C is at least 5, i.e., C is a linear code

(22, 16, _> 5) over GF(23).
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Proof: From Corollary 1.1, it is sufficient to prove D_ 6) <_ 3. From the definition,

D(36) = max{D{[l],.,.}, D{[_],.,.}, D{[y],.,.}, D{[o:2],[_yl,[_3+y2])}.

It is easily seen that the first number is equal to zero, the second and third number is

at most 3. In the following we prove that the last number is at most 3.

From the definition, D{[z2],[z_],[xz+u2]} expresses the maximal number of distinct points
of the intersection of the following four curves:

x3y+y3-4-x=O

x3 +y2 +ax +by+c=O

x 2 + dx + ey + f = 0

xy+gx + by+ i = 0

(6)

where a, b, c, d, e, f, g, h, i are any constants over GF(23).

the following PR(y):

It is equal to

It is equal to

1 0 a y2 + by + c

1 d ey+f 0

0 1 d ey+f

0 0 g+g hg+i

1 0 a y2 + by + c

0 d eg+f, y2+by+c

0 1 d ey+f

0 0 y+g hy+i

From these equations, we have

0 ey+f' y2+b,y+c,

1 d ey+f

0 g+g hy+i

ey + f'

Y+g

The determinant is equal to y3 -k- ''-. Thus, D (6) < 3. []

4.4 Improved Hermitian Codes

Let us consider the Hermitian curve over GF(24):

xS+y4+y=O.

Let us consider the Hermitian code over GF(24) defined by the following parity check
matrix:

H =_ [1,x,y, x2, xy, y2, x3, y3+ x4] T.

We have the following theorem.

Theorem 4.7 The minimum distance of the defined above Hermitian codes is at least 6,

i.e., the Hermitain code is a linear code (64, 56, > 6) over GF(24).
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Proof'. From Corollary 1.1, it is sufficient to prove D_ 8) <: 4. From the definition,

D_s) = max{D{[ll ...... }, D{[=]...... }, D{[y I...... }, Di[_2],[y2] .... }, D{[xy],iyal,[x3],[ya+x4]}, D{[x2],[xy],[z3l,[ya+x4]}}.

It is easily seen that the first number is equal to zero, the second and third number is at

most 3. The 4th number is at most 4. In the following we prove that the last two numbers

are at most 4.

From Proposition 2.3, D{[xy],[_2],[x3],[y3+_,]} _< D{[xy],[y2],[_3]}. Using Theorem 3.1, the

right side is at most 4. Thus, the 5-th number is also at most 4.

Now let us consider the 6-th number. From Proposition 2.4,

D{[x2l,[xyl,[x3l,[y3+z4]} = D{[x2],[x_l,[_3+x41}.

From the definition, D{[_2],[_y],[y3+x4]} expresses the maximal number of distinct points

of the intersection of the following four curves:

x5+y4+y=O

x4 + y3 + ay2 + by + cx + d = 0

x 2 + a'y 2 + b'y + c'x + d t = 0

xy + a"y 2 + b"y + c"x + d" = 0

(7)

where a, b, c, d, a', b', c', d', a", b", c", d" are any constants over GF(24). From these equations,

we have the following PR(y):

1 0 0 c y3 + ay2 + by + d

1 c' a'y 2+b'y+d' 0 0

0 1 c' a'y _+b'y+d' 0

0 0 1 c' a'y 2+b'y+d'

0 0 0 y + c" a"y 2 + b"y + d"

It is equal to

1 0 0 c y3+ay2+by+d

0 c' a'y 2+b'y+d' c y3+ay2+by+d

0 1 c' a'y 2+b'y+d' 0

0 0 1 c I a'y 2+b'y+d'

0 0 0 y+ c" a"y 2 + b"y + d"

It can be easily seen that when a' = 0 and a" = 0, the determinant is equal to y4 + ....

The degree is equal to 4. When a _ ¢ 0, the 6-th number reduces to the 5-th number, i.e.

D{[_:],[_y],[x3],[y3+_4]} reduces to D{[_],[y_l,[_3],[y3+_4]}. When a" ¢ 0, the the 6-th number
reduces to the 4-th number. Thus, the 6-th number is also at most 4. Therefore, the 6-th

number is at most 4. []

Using Riemann-Roch Theorem, the current AG code with d _> 6, r should be d+g- 1 =

11. That means the linear code (64, 53, _ 6) defined by H' = [1, x, y, x 2, xy, y2, x 3, x2y, xy2

y3, x4]T has the minimum distance d >_ 6. Using the construction in [18], an improved

Hermitian code defined by H' = [1, x, y, x _, xy, y2, x 3, y3, x4]T is a linear code (64, 55, _> 6).

The new code is more efficient.
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5 Conclusions

It is well known that Bezout's theorem can be used to determine an upper bound of the

number of common points of two plane curves. In this paper, we first reduce the deter-

mination of a lower bound of a linear code's minimum distance and generalized Hamming

weights to the determination of the number of distinct points of the intersection of several

curves. Then we present a generalized Bezout theorem and a new approach to determine

the minimum distance and the generalized Hamming weights. We also present a new con-

struction of linear codes with any length n over GF(2 b) with minimum distance 4 and _> 5.

The codes with d = 4 have been used in computer memory systems. The new codes have

applications not only in computer memory systems but also in distributed systems [24, 25],
CD audio, Video disk, and CD ROM.

In this paper, we discuss only the case in two-dimensional affine spaces. Our results

should generalize to high-dimensional affine spaces.
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